\(\int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx\) [532]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 144 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=-\frac {c d (a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right )^2 (d+e x)^2}-\frac {e \left (a+c x^2\right )^{3/2}}{3 \left (c d^2+a e^2\right ) (d+e x)^3}-\frac {a c^2 d \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{2 \left (c d^2+a e^2\right )^{5/2}} \]

[Out]

-1/3*e*(c*x^2+a)^(3/2)/(a*e^2+c*d^2)/(e*x+d)^3-1/2*a*c^2*d*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^
(1/2))/(a*e^2+c*d^2)^(5/2)-1/2*c*d*(-c*d*x+a*e)*(c*x^2+a)^(1/2)/(a*e^2+c*d^2)^2/(e*x+d)^2

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {745, 735, 739, 212} \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=-\frac {a c^2 d \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{2 \left (a e^2+c d^2\right )^{5/2}}-\frac {c d \sqrt {a+c x^2} (a e-c d x)}{2 (d+e x)^2 \left (a e^2+c d^2\right )^2}-\frac {e \left (a+c x^2\right )^{3/2}}{3 (d+e x)^3 \left (a e^2+c d^2\right )} \]

[In]

Int[Sqrt[a + c*x^2]/(d + e*x)^4,x]

[Out]

-1/2*(c*d*(a*e - c*d*x)*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)^2*(d + e*x)^2) - (e*(a + c*x^2)^(3/2))/(3*(c*d^2 + a
*e^2)*(d + e*x)^3) - (a*c^2*d*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(2*(c*d^2 + a*e^2)
^(5/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 735

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(-2*a*e + (2*c
*d)*x)*((a + c*x^2)^p/(2*(m + 1)*(c*d^2 + a*e^2))), x] - Dist[4*a*c*(p/(2*(m + 1)*(c*d^2 + a*e^2))), Int[(d +
e*x)^(m + 2)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 2
, 0] && GtQ[p, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*((a + c*x^2)^(p
 + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Dist[c*(d/(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x]
 /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 3, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {e \left (a+c x^2\right )^{3/2}}{3 \left (c d^2+a e^2\right ) (d+e x)^3}+\frac {(c d) \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx}{c d^2+a e^2} \\ & = -\frac {c d (a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right )^2 (d+e x)^2}-\frac {e \left (a+c x^2\right )^{3/2}}{3 \left (c d^2+a e^2\right ) (d+e x)^3}+\frac {\left (a c^2 d\right ) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{2 \left (c d^2+a e^2\right )^2} \\ & = -\frac {c d (a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right )^2 (d+e x)^2}-\frac {e \left (a+c x^2\right )^{3/2}}{3 \left (c d^2+a e^2\right ) (d+e x)^3}-\frac {\left (a c^2 d\right ) \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{2 \left (c d^2+a e^2\right )^2} \\ & = -\frac {c d (a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right )^2 (d+e x)^2}-\frac {e \left (a+c x^2\right )^{3/2}}{3 \left (c d^2+a e^2\right ) (d+e x)^3}-\frac {a c^2 d \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{2 \left (c d^2+a e^2\right )^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.20 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.20 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=\frac {\sqrt {c d^2+a e^2} \sqrt {a+c x^2} \left (-2 a^2 e^3+c^2 d^2 x (3 d+e x)-a c e \left (5 d^2+3 d e x+2 e^2 x^2\right )\right )+3 a c^2 d (d+e x)^3 \log (d+e x)-3 a c^2 d (d+e x)^3 \log \left (a e-c d x+\sqrt {c d^2+a e^2} \sqrt {a+c x^2}\right )}{6 \left (c d^2+a e^2\right )^{5/2} (d+e x)^3} \]

[In]

Integrate[Sqrt[a + c*x^2]/(d + e*x)^4,x]

[Out]

(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2]*(-2*a^2*e^3 + c^2*d^2*x*(3*d + e*x) - a*c*e*(5*d^2 + 3*d*e*x + 2*e^2*x^2)
) + 3*a*c^2*d*(d + e*x)^3*Log[d + e*x] - 3*a*c^2*d*(d + e*x)^3*Log[a*e - c*d*x + Sqrt[c*d^2 + a*e^2]*Sqrt[a +
c*x^2]])/(6*(c*d^2 + a*e^2)^(5/2)*(d + e*x)^3)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(987\) vs. \(2(128)=256\).

Time = 2.18 (sec) , antiderivative size = 988, normalized size of antiderivative = 6.86

method result size
default \(\frac {-\frac {e^{2} \left (c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}{3 \left (e^{2} a +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{3}}+\frac {c d e \left (-\frac {e^{2} \left (c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}{2 \left (e^{2} a +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}+\frac {c d e \left (-\frac {e^{2} \left (c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}{\left (e^{2} a +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}-\frac {c d e \left (\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\right )}{e^{2} a +c \,d^{2}}+\frac {2 c \,e^{2} \left (\frac {\left (2 c \left (x +\frac {d}{e}\right )-\frac {2 c d}{e}\right ) \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{4 c}+\frac {\left (\frac {4 c \left (e^{2} a +c \,d^{2}\right )}{e^{2}}-\frac {4 c^{2} d^{2}}{e^{2}}\right ) \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{8 c^{\frac {3}{2}}}\right )}{e^{2} a +c \,d^{2}}\right )}{2 e^{2} a +2 c \,d^{2}}+\frac {c \,e^{2} \left (\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\right )}{2 e^{2} a +2 c \,d^{2}}\right )}{e^{2} a +c \,d^{2}}}{e^{4}}\) \(988\)

[In]

int((c*x^2+a)^(1/2)/(e*x+d)^4,x,method=_RETURNVERBOSE)

[Out]

1/e^4*(-1/3/(a*e^2+c*d^2)*e^2/(x+d/e)^3*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(3/2)+c*d*e/(a*e^2+c*d
^2)*(-1/2/(a*e^2+c*d^2)*e^2/(x+d/e)^2*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(3/2)+1/2*c*d*e/(a*e^2+c
*d^2)*(-1/(a*e^2+c*d^2)*e^2/(x+d/e)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(3/2)-c*d*e/(a*e^2+c*d^2)*
((c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)-c^(1/2)*d/e*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2-
2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))-(a*e^2+c*d^2)/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-
2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))+2
*c/(a*e^2+c*d^2)*e^2*(1/4*(2*c*(x+d/e)-2*c*d/e)/c*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)+1/8*(4
*c*(a*e^2+c*d^2)/e^2-4*c^2*d^2/e^2)/c^(3/2)*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+
c*d^2)/e^2)^(1/2))))+1/2*c/(a*e^2+c*d^2)*e^2*((c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)-c^(1/2)*d/
e*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))-(a*e^2+c*d^2)/e^2/((a*e
^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*
(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 417 vs. \(2 (129) = 258\).

Time = 0.51 (sec) , antiderivative size = 861, normalized size of antiderivative = 5.98 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=\left [\frac {3 \, {\left (a c^{2} d e^{3} x^{3} + 3 \, a c^{2} d^{2} e^{2} x^{2} + 3 \, a c^{2} d^{3} e x + a c^{2} d^{4}\right )} \sqrt {c d^{2} + a e^{2}} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, {\left (5 \, a c^{2} d^{4} e + 7 \, a^{2} c d^{2} e^{3} + 2 \, a^{3} e^{5} - {\left (c^{3} d^{4} e - a c^{2} d^{2} e^{3} - 2 \, a^{2} c e^{5}\right )} x^{2} - 3 \, {\left (c^{3} d^{5} - a^{2} c d e^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{12 \, {\left (c^{3} d^{9} + 3 \, a c^{2} d^{7} e^{2} + 3 \, a^{2} c d^{5} e^{4} + a^{3} d^{3} e^{6} + {\left (c^{3} d^{6} e^{3} + 3 \, a c^{2} d^{4} e^{5} + 3 \, a^{2} c d^{2} e^{7} + a^{3} e^{9}\right )} x^{3} + 3 \, {\left (c^{3} d^{7} e^{2} + 3 \, a c^{2} d^{5} e^{4} + 3 \, a^{2} c d^{3} e^{6} + a^{3} d e^{8}\right )} x^{2} + 3 \, {\left (c^{3} d^{8} e + 3 \, a c^{2} d^{6} e^{3} + 3 \, a^{2} c d^{4} e^{5} + a^{3} d^{2} e^{7}\right )} x\right )}}, -\frac {3 \, {\left (a c^{2} d e^{3} x^{3} + 3 \, a c^{2} d^{2} e^{2} x^{2} + 3 \, a c^{2} d^{3} e x + a c^{2} d^{4}\right )} \sqrt {-c d^{2} - a e^{2}} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) + {\left (5 \, a c^{2} d^{4} e + 7 \, a^{2} c d^{2} e^{3} + 2 \, a^{3} e^{5} - {\left (c^{3} d^{4} e - a c^{2} d^{2} e^{3} - 2 \, a^{2} c e^{5}\right )} x^{2} - 3 \, {\left (c^{3} d^{5} - a^{2} c d e^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{6 \, {\left (c^{3} d^{9} + 3 \, a c^{2} d^{7} e^{2} + 3 \, a^{2} c d^{5} e^{4} + a^{3} d^{3} e^{6} + {\left (c^{3} d^{6} e^{3} + 3 \, a c^{2} d^{4} e^{5} + 3 \, a^{2} c d^{2} e^{7} + a^{3} e^{9}\right )} x^{3} + 3 \, {\left (c^{3} d^{7} e^{2} + 3 \, a c^{2} d^{5} e^{4} + 3 \, a^{2} c d^{3} e^{6} + a^{3} d e^{8}\right )} x^{2} + 3 \, {\left (c^{3} d^{8} e + 3 \, a c^{2} d^{6} e^{3} + 3 \, a^{2} c d^{4} e^{5} + a^{3} d^{2} e^{7}\right )} x\right )}}\right ] \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^4,x, algorithm="fricas")

[Out]

[1/12*(3*(a*c^2*d*e^3*x^3 + 3*a*c^2*d^2*e^2*x^2 + 3*a*c^2*d^3*e*x + a*c^2*d^4)*sqrt(c*d^2 + a*e^2)*log((2*a*c*
d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))
/(e^2*x^2 + 2*d*e*x + d^2)) - 2*(5*a*c^2*d^4*e + 7*a^2*c*d^2*e^3 + 2*a^3*e^5 - (c^3*d^4*e - a*c^2*d^2*e^3 - 2*
a^2*c*e^5)*x^2 - 3*(c^3*d^5 - a^2*c*d*e^4)*x)*sqrt(c*x^2 + a))/(c^3*d^9 + 3*a*c^2*d^7*e^2 + 3*a^2*c*d^5*e^4 +
a^3*d^3*e^6 + (c^3*d^6*e^3 + 3*a*c^2*d^4*e^5 + 3*a^2*c*d^2*e^7 + a^3*e^9)*x^3 + 3*(c^3*d^7*e^2 + 3*a*c^2*d^5*e
^4 + 3*a^2*c*d^3*e^6 + a^3*d*e^8)*x^2 + 3*(c^3*d^8*e + 3*a*c^2*d^6*e^3 + 3*a^2*c*d^4*e^5 + a^3*d^2*e^7)*x), -1
/6*(3*(a*c^2*d*e^3*x^3 + 3*a*c^2*d^2*e^2*x^2 + 3*a*c^2*d^3*e*x + a*c^2*d^4)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-
c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (5*a*c^2*d^4*e +
 7*a^2*c*d^2*e^3 + 2*a^3*e^5 - (c^3*d^4*e - a*c^2*d^2*e^3 - 2*a^2*c*e^5)*x^2 - 3*(c^3*d^5 - a^2*c*d*e^4)*x)*sq
rt(c*x^2 + a))/(c^3*d^9 + 3*a*c^2*d^7*e^2 + 3*a^2*c*d^5*e^4 + a^3*d^3*e^6 + (c^3*d^6*e^3 + 3*a*c^2*d^4*e^5 + 3
*a^2*c*d^2*e^7 + a^3*e^9)*x^3 + 3*(c^3*d^7*e^2 + 3*a*c^2*d^5*e^4 + 3*a^2*c*d^3*e^6 + a^3*d*e^8)*x^2 + 3*(c^3*d
^8*e + 3*a*c^2*d^6*e^3 + 3*a^2*c*d^4*e^5 + a^3*d^2*e^7)*x)]

Sympy [F]

\[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=\int \frac {\sqrt {a + c x^{2}}}{\left (d + e x\right )^{4}}\, dx \]

[In]

integrate((c*x**2+a)**(1/2)/(e*x+d)**4,x)

[Out]

Integral(sqrt(a + c*x**2)/(d + e*x)**4, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 529 vs. \(2 (129) = 258\).

Time = 0.29 (sec) , antiderivative size = 529, normalized size of antiderivative = 3.67 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=-\frac {a c^{2} d \arctan \left (\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right )}{{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt {-c d^{2} - a e^{2}}} - \frac {3 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{5} a c^{2} d e^{4} - 6 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{4} c^{\frac {7}{2}} d^{4} e + 3 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{4} a c^{\frac {5}{2}} d^{2} e^{3} - 6 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{4} a^{2} c^{\frac {3}{2}} e^{5} - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} c^{4} d^{5} + 14 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a c^{3} d^{3} e^{2} - 12 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a^{2} c^{2} d e^{4} + 6 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a c^{\frac {7}{2}} d^{4} e - 24 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a^{2} c^{\frac {5}{2}} d^{2} e^{3} - 6 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{2} c^{3} d^{3} e^{2} + 9 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{3} c^{2} d e^{4} + a^{3} c^{\frac {5}{2}} d^{2} e^{3} - 2 \, a^{4} c^{\frac {3}{2}} e^{5}}{3 \, {\left (c^{2} d^{4} e^{2} + 2 \, a c d^{2} e^{4} + a^{2} e^{6}\right )} {\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} e + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} \sqrt {c} d - a e\right )}^{3}} \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^4,x, algorithm="giac")

[Out]

-a*c^2*d*arctan(((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))/((c^2*d^4 + 2*a*c*d^2*e^2
+ a^2*e^4)*sqrt(-c*d^2 - a*e^2)) - 1/3*(3*(sqrt(c)*x - sqrt(c*x^2 + a))^5*a*c^2*d*e^4 - 6*(sqrt(c)*x - sqrt(c*
x^2 + a))^4*c^(7/2)*d^4*e + 3*(sqrt(c)*x - sqrt(c*x^2 + a))^4*a*c^(5/2)*d^2*e^3 - 6*(sqrt(c)*x - sqrt(c*x^2 +
a))^4*a^2*c^(3/2)*e^5 - 4*(sqrt(c)*x - sqrt(c*x^2 + a))^3*c^4*d^5 + 14*(sqrt(c)*x - sqrt(c*x^2 + a))^3*a*c^3*d
^3*e^2 - 12*(sqrt(c)*x - sqrt(c*x^2 + a))^3*a^2*c^2*d*e^4 + 6*(sqrt(c)*x - sqrt(c*x^2 + a))^2*a*c^(7/2)*d^4*e
- 24*(sqrt(c)*x - sqrt(c*x^2 + a))^2*a^2*c^(5/2)*d^2*e^3 - 6*(sqrt(c)*x - sqrt(c*x^2 + a))*a^2*c^3*d^3*e^2 + 9
*(sqrt(c)*x - sqrt(c*x^2 + a))*a^3*c^2*d*e^4 + a^3*c^(5/2)*d^2*e^3 - 2*a^4*c^(3/2)*e^5)/((c^2*d^4*e^2 + 2*a*c*
d^2*e^4 + a^2*e^6)*((sqrt(c)*x - sqrt(c*x^2 + a))^2*e + 2*(sqrt(c)*x - sqrt(c*x^2 + a))*sqrt(c)*d - a*e)^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^4} \, dx=\int \frac {\sqrt {c\,x^2+a}}{{\left (d+e\,x\right )}^4} \,d x \]

[In]

int((a + c*x^2)^(1/2)/(d + e*x)^4,x)

[Out]

int((a + c*x^2)^(1/2)/(d + e*x)^4, x)